New Ways to Map How the Face Ages

In the fight to protect our faces from the ravages of aging, gravity is one of our biggest enemies. As we get older, Newton's favorite force pulls everything from our brows to our chins south, and despite the claims of the multibillion-dollar anti-aging industry there is only so much we can do to pull back. And new research indicates that the face is a much more complicated battlefield than previously thought.

Rather than being a single area, the face is made up of not one, but 16 anatomically distinct compartments that gain and lose fatty tissue independently of one another over time, scientists at the University of Texas Southwestern Medical Center announced in a recent issue of Plastic and Reconstructive Surgery. The discovery is upending previous assumptions about the face's structure, and its implications may reach beyond better face-lifts to a new understanding of obesity.

"For the last 100 years or so, we thought that facial skin and fat were held up by a handful of ligaments, and that the visual effects of aging come as those ligaments break down and gravity takes over," says James Stuzin, a plastic surgeon in Coconut Grove, Fla., who was not involved in the study. "It turns out we got that wrong."

One clue into the face's complexity is the fact that it does not age uniformly. As your cheeks begin to sag, for example, the area around your eyes may remain young and sprightly looking. This led Rod Rohrich, a professor and plastic surgeon at the University of Texas Southwestern Medical Center and the study's lead author, to speculate that something might be separating sections of the face from one another. To test this theory, he and his colleagues injected blue dye into the faces of 30 cadavers. Rather than disperse evenly, which is what you'd expect if the face were a single area, the dye only spread throughout a specific facial area, depending on where it was injected. In all, they found eight distinct compartments on each side of the face.

"Human anatomy has been studied for over 500 years," says study coauthor Joel Pessa, an assistant professor and plastic surgeon at UT Southwestern. "It's pretty unusual to see something this new at the macroscopic, anatomical level."

The compartments themselves are created by membranes that carry blood vessels to the face. Ligaments, once thought to play a leading role, are really the posts along an intricate series of membrane fences, according to the research. Knowing where these membranes are located, and where they intersect, may aid in the design of more specific flaps—tears of skin that plastic surgeons move from one area of the body to another. This could improve facial reconstruction techniques for those who've been injured in accidents or combat.

As the face ages, not only do ligaments break down, empowering gravity, but each compartment gains or loses fat independently of its neighbors. While plastic surgeons have long understood that part of the aging equation involves facial fat loss (a process they refer to as deflation), they may have underestimated its role in shaping the appearance of older faces. "Some of what looks like sagging, is really just deflation in deeper compartments," says Pessa. "Knowing this will allow us to approach facial rejuvenation in a much more precise and individualized way."

Researchers are looking into whether the case is the same for the rest of the body. "It opens a whole new avenue of investigation," says Stuzin. "Now we can look at fat storage in a very scientific manner." Scientists already know that people who store fat in certain regions of the body face a greater risk for developing heart disease. But Rohrich and Pessa's research shows that common terms like "intra-abdominal" may actually refer to several distinct compartments. And that may lead to better predictions of risk. "Rather than saying 'you store fat in the abdomen,' we'll be able to say, 'you store fat in the deep axillary fat compartment'." says Pessa. "It will be a much more fine-tuned diagnosis—but that's a few years down the road."

Join the Discussion